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a b s t r a c t

We applied the random forest method to discriminate among different kinds of cut tobacco. To overcome
the influence of the descending resolution caused by column pollution and the subsequent deterioration
of column efficacy at different testing times, we constructed combined peaks by summing the peaks
vailable online 30 July 2010

eywords:
andom forest
ombined features

over a specific elution time interval �t. On constructing tree classifiers, both the original peaks and the
combined peaks were considered. A data set of 75 samples from three grades of the same tobacco brand
was used to evaluate our method. Two parameters of the random forest were optimized using out-of-bag
error, and the relationship between �t and classification rate was investigated. Experiments show that
partial least squares discriminant analysis was not suitable because of the overfitting, and the random

featu
d the
ut tobacco
C–TOF MS

forest with the combined
bootstrap aggregating an

. Introduction

Quality-control in cigarettes is attracting more and more atten-
ion recently. The main differences among different cigarette
rands or grades are the contents of fragrances and potentially
azardous substances, such as tar and nicotine [1,2]. The quality
f cigarettes is usually evaluated using visual aspects and oral and
lfactory sensory criteria. In many cases, such inspections strongly
ely on the operator’s experience. The evaluation results are thus
nreliable and may differ with various estimators. Therefore, it is
ecessary to be able to assess different cigarette brands or grades
sing more scientific techniques.

Several kinds of instrumental methods, including gas chro-
atography (GC) [3], gas chromatography–mass spectrometry

GC–MS) [4] and near-infrared (NIR) spectrometry [5,6], have
een used to collect chemical fingerprint information for tobacco.
ultidimensional separation methods, including comprehensive

wo-dimensional gas chromatography method [7,8], were also
sed for tobacco components analysis. However, instrument

peration and data processing become more complex when mul-
idimensional separation methods were used for quantitative
nalysis of tobacco profiling. Gas chromatography-flame ioniza-
ion detection (GC-FID), with its high sensitivity, good stability

∗ Corresponding author. Tel.: +86 411 84379531; fax: +86 411 84379559.
E-mail address: xugw@dicp.ac.cn (G. Xu).

039-9140/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.talanta.2010.07.053
res performed more accurately than Naïve Bayes, support vector machines,
random forest using only its original features.

© 2010 Elsevier B.V. All rights reserved.

and popularity, is a powerful tool for tobacco fingerprint col-
lection. The present work aimed to evaluate the possibility of
developing a classification method able to discriminate different
kinds of cigarettes based on the GC-FID fingerprint data of cut
tobacco.

Many multivariate analysis techniques, such as partial least
squares discriminant analysis (PLS-DA) [9], support vector
machines (SVM) [10] and Naïve Bayes [11], have been used for
class discrimination. In addition, it has been shown that ensemble
techniques, such as boosting [12], bootstrap aggregating (bagging)
[13] and random forest (RF) [14], can significantly improve learning
performance [15].

RF, originally developed by Leo Breiman, is one of the most
successful ensemble methods [14]. It is a classifier consisting of
a collection of tree-type classifiers [14–17]. Each tree-type classi-
fier uses a unique training set constructed by boostraping. As the
RF method introduces randomness on the basis of bagging, it can
thus be considered a further development of bagging. It has good
predictive performance when compared with current popular clas-
sification algorithms such as SVM [18,19]. As a type of supervised
method, it has no problems with overfitting due to the use of the
strong law of large numbers [14]. Since it was proposed, RF has

become a well-known data-analysis method. It has been applied
to a wide variety of scientific areas, including microarray data
[20], quantitative structure–activity relationship (QSAR) modeling
[21,22], land cover [23] and the prediction of protein interactions
[24].
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The RF method combines two different forms of randomness:
he random selection of the features and the random linear com-
ination of the original features [14]. The chemical fingerprint

nformation of a sample consists of separated peaks. Each peak
epresents at least one chemical component. The distribution of
eaks and their areas (or heights) is unique for each sample. In the

deal case, the degree of separation between different peaks for a
iven sample is the same in different trials in the same analyti-
al system and operational conditions. However, in practice they
end to decrease with the number of analyzed samples because
f the loss of resolution of the chromatography column. Typically,
ome small peaks will disappear or merge with their neighbors,
nd peak alignment among different chromatograms will decline,
hich can result in an incorrect classification. To solve this problem,

n this work we defined combined features (peaks) by combining
eatures (peaks) in a specified elution time zone. A combined ran-
om forest (CRF) based on both the original features (peaks) and
ombined features (peaks) was constructed and applied to process
hemical fingerprint information from samples of cut tobacco. The
ata of three grades of “Furong” series cut tobacco were used to
emonstrate the CRF method.

. Theory of random forests

Let A = {a1, a2, . . ., am}be a set of features (here, peaks); x denotes
he input vector, and f(ai, x) denotes the ith feature value of the
ample x. Here f(ai, x) is the area of the ith peak, which represents
he concentration of the peak component(s).

A random forest consists of ntree tree classifiers {h(x,�k), k = 1,2,
. ., ntree} in which the {�k} are independent, uniformly random
ectors [14]. For classification, each tree contributes a unit vote at
he input sample x. The output of the classifier is determined by the

ajority votes of all of the trees in the forest, i.e.,

∗ = argmaxc

∣∣{�k : h(x, �k) = c, 1 ≤ k ≤ ntree}
∣∣ (1)

The random forest benefits from two powerful machine-
earning techniques: bagging [12] and random subspace selection
14]. First, on constructing a tree classifier, a bootstrap sample is
rawn from the original observations. The samples that are not in
he bootstrap sample are called out-of-bag (OOB) data. The OOB
ata (about 37% of the total data) can be used to estimate predic-
ion error. Second, as each node of a tree is split, the best split is
hosen from a random subset of the features. The best split [14]
s the one yielding the maximum in the expected reduction of the
verall impurity value, which is defined as follows:

Im(LS, ai) = Im(LS) −
∑

a

|LSa|
|LS| Im(LSa) (2)

here LS is the data set at the node and LSa is the subset of samples
rom LS such that the samples in LSa have the same value a for
eature ai, that is, LSa = {x|x∈LS, f(ai, x) = a}. There are many tools
vailable to measure the impurity Im(LS, ai). Here we use Shannon’s
ntropy [25] as the impurity measure.

By defining the margin function for a random forest and using
he law of large numbers as a theoretical foundation, Breiman
roved that the generalization error [14] of a random forest tends to
limited upper bound with an increase of the number of trees. The
eneralization error depends on two aspects: (1) a greater strength
f the individual classifiers in the random forest leads to a better
he performance of the forest; and (2) a lower correlation between

he individual trees yields a better performance of a random forest.
ormula (3) gives an upper bound for the generalization error [14]:

E∗ ≤ �̄(1 − s2)
s2

(3)
2010) 1571–1575

where �̄ is the mean value of the correlation between the individual
trees and s is the strength of the individual trees.

To lower the similarity between the individual trees and thus
obtain low-bias trees, each tree is grown to the largest size and is
unpruned [14].

3. Experimental

3.1. Materials, chemicals and reagents

A total of 75 cut tobacco samples from three grades of the same
cigarette brand were kindly provided by the China Tobacco Hunan
Industry Corporation, Changde, Hunan, China (25 samples of each
grade). Each grade of cut tobacco samples were produced by using
routine methods from the product line with different levels of crude
tobacco leaves and fragrances. The cigarettes were unwrapped, and
the cut tobacco was collected and milled into powder (40 mesh).
The quality-control (QC) sample was a mixture of equal amounts
of the 75 testing samples.

The internal standard 2-methylnaphthalene was purchased
from Sigma–Aldrich (Beijing, China). Dichloromethane (analytical
grade) was purchased from Dikma (Beijing, China).

3.2. Accelerated solvent extraction

A Dionex ASE200 accelerated solvent extractor (CA, USA)
equipped with 11-mL stainless steel extraction cells, and 60-mL
glass collection bottles was used for the accelerated solvent extrac-
tions (ASE). Each extraction cell was filled with 4.0 g of tobacco
powder, and 200 �L of internal standard solution (0.15 mg mL−1)
was spiked into the tobacco powder. The cell was then loaded
into the autosampler tray. Extraction conditions were as follows:
static extraction time, 5 min; extraction cycles, 2; extraction pres-
sure, 1500 psi; and extraction temperature, 100 ◦C. The extraction
solution was collected and then condensed to 1 mL with a rotary
evaporator at atmospheric pressure. The condensed solution was
filtered and stored in a 1.5-mL screw-capped vial for instrumental
analysis.

3.3. GC-FID analysis

The gas chromatographic analyses were carried out on an Agi-
lent 6890 GC system (Agilent Technologies, USA) equipped with
an autosampler. Separations were conducted using a DB-5 MS,
30 m × 0.25 mm capillary column coated with a 0.25-�m station-
ary phase film (Agilent Technologies, Palo Alto, CA, USA). Helium
was used as the carrier gas at a flow rate of 1.2 mL min−1. The col-
umn temperature was programmed at 50 ◦C for 1 min, raised to
220 ◦C at 8 ◦C min−1, held for 7 min and then raised to 280 ◦C at
15 ◦C min−1. Finally, the temperature was held at 280 ◦C for 20 min.
All of the samples were analyzed in split mode (1 �L injection, split
rate, 10:1). The FID heater temperature was held at 280 ◦C. The flow
rates of hydrogen, air and nitrogen in the FID were 40, 450 and
45 mL min−1, respectively.

3.4. Peak alignment and data preprocessing

3.4.1. Peak alignment
The RF is a type of supervised learning method in which the data

are randomly divided into two parts, a training set, TR, containing
about two-thirds of the samples, and a test set, TE, containing the

remaining samples. Let TR = {x1, x2, . . ., xnR}, where nR is the size of
the training set.

We used our own program written in C++ to align the samples.
First, when constructing each tree classifier in the forest, the sam-
ples in the training set TR were aligned to obtain a peak table. A
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Fig. 1. Deterioration of chromatography resolution with the injection time: (a) first
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tobacco (Fig. 2). To evaluate and regularize the validity of the finger-
printing data, QC samples were inserted into the sample analysis
sequence at the rate of 10 test samples for each QC sample. The
reproducibility of the QC samples was calculated and is shown
in Fig. 3. Usually, peaks with area RSDs over 25% with respect to
njection; (b) 200th injection. Plots of the two injections were mirrored to the x-
xis to make a distinct comparison. Plots of the two injections were mirrored to the
-axis to make a distinct comparison.

ypical chromatogram in TR was selected as the reference. Accord-
ng to the retention time stability of the internal standard, the

atch window was set to 0.18 min. All of the other samples in TR

ere compared with the reference chromatogram. The peaks of the
amples lying in the same retention time windows were regarded
s the same peaks. The peak areas of a sample are divided by the
rea of the internal standard.

To remove the unstable peaks (features) in the chromatography
ata, we used QC samples to filter out the peaks whose peak area
SDs (relative standard deviations) were larger than 25%. The peaks
aving MSDs (mean squared deviations) in a peak area <0.0005
ere also removed because of their small contribution to the classi-
cation. Second, during classification, the input sample was aligned
o the peak table before the corresponding tree casts a vote on it.

.4.2. Normalization
In multivariate analysis, the influence of the scale of the vari-

bles needs to be considered. The peaks in the samples represented
great range of concentrations; hence, before the tree classifiers
ere constructed, the peak area data were first normalized as fol-

ows:

′(aj, xi) = f (aj, xi)∑m
k=1f (ak, xi)

(4)

here i = 1, 2, . . ., nR and j = 1, 2, . . ., m.
For prediction, when tree classifier h(x,�k), k = 1, 2, . . ., ntree,

eceives an input vector x, it first aligns x with the peak table and
hen normalizes x as done in the training set. Finally, each tree casts
unit vote at x.

.4.3. Combined peaks
In the separation of complex samples, it is very often observed

hat the chemical fingerprints obtained at different times for the
ame sample display differences, and the degree of separation may
ecrease over time due to the decline in column efficacy from col-
mn pollution; some small peaks may disappear or merge with
heir neighbors (see Fig. 1), leading to poor peak alignment and
ncorrect classification.

To overcome the influence of resolution deterioration and
mprove the performance of the RF, we considered the combined
eaks, which represent the sum of all of the peaks in a specific

etention time zone.

Let tj denote the retention time of peak (feature) aj (1 ≤ j ≤ m).
ith a given time interval �t, for any 0 < l1 < l2 ≤ m (Fig. 1), and

bservation x, if 0 < tl2 − tl1 ≤ �t, �t < tl2+1 − tl1 , and �t < tl2 −
2010) 1571–1575 1573

tl1−1, we have:

f (anew, x) =
l2∑

k=l1

f (ak, x) (5)

where anew is a new combined peak (feature) that contains all peaks
in the time interval �t. Assume that there are m* combined peaks.
Letting A′ = {a1, a2, . . ., am, am+1, . . ., am+m*}, we then take A′ instead
of A to be the feature set. A′ contains not only the original sepa-
rated peaks but also the combined peaks; it can thus compensate for
the errors caused by integral and peak mismatch due to resolution
change.

Obviously, the selection of the �t value has an important influ-
ence on the classification rate of the model. In the next section we
investigate the value of �t through experiments.

3.5. SVM, Naïve Bayes and bagging

SVM, Naïve Bayes [26] and bagging are three popular multivari-
ate analysis techniques. In order to evaluate our method, we also
used them to handle cut tobacco data. In SVM the radial basis func-
tion was selected as the kernel function, a “grid search” on the two
parameters C and � was used based on cross-validation. For Bagging
we took decision trees as its base classifiers. The main difference
of it from RF is that all the features (peaks) are used as candidate
features on building a tree classifier.

4. Results and discussion

4.1. GC fingerprint analysis of cut tobacco

A GC method was used to obtain chemical fingerprints of cut
Fig. 2. Three typical gas chromatograms of “Furong” series cut tobacco. (a), (b) and
(c) were from class 1, class 2 and class 3, respectively.



1574 X. Lin et al. / Talanta 82 (2010) 1571–1575

F
i

t
f
i
a
l
b
r
s
w
o
r
a
m
i
a
(

4

t
s
t
t
a
t
t
“
a
r

l
a
f
t
i
m
�
i

i
t
t
9
i
t
p
a

[27]; thus, PLS-DA failed to accurately model the “Furong” series
cut tobacco data.

Although RF is also a kind of supervised method, it does not incur
the problem of overfitting due to the use of the strong law of large
ig. 3. RSD (%) distribution of relative peak areas before and after manually merging
ncompletely separated peaks.

he QC samples are considered unstable peaks and are not used
or classification. In this experiment, 38% of the peaks (compris-
ng 3.4% of the total peak areas) had RSDs greater than 25% in the
ligned raw data and should thus be removed, resulting in a great
oss of raw information. The unacceptable RSD of these peaks may
e attributed to the decrease of separation ability of the chromatog-
aphy column because of the long analysis period (several days or
everal months) or the contamination of the column; some peaks
ere separated in some chromatograms and are overlapping in

ther chromatograms (Fig. 1). Because of this overlap, the accu-
ate alignment of these unstable peaks and the integration of their
reas with the workstation became impossible. To use the infor-
ation represented by these peaks, merging of the neighboring,

ncompletely separated peaks is an option. After the merging oper-
tion, the number of peaks with RSDs over 30% markedly decreased
Fig. 3).

.2. Parameter optimization

There are three important parameters in CRF: the number of
he trees in the forest (ntree), the number of the peaks randomly
elected as the candidates for splitting at each node (mtry) and the
ime interval selected to construct combined peaks (�t). We used
he OOB error to evaluate the effects of different settings of ntree
nd mtry. Fig. 4 shows the relationship of the OOB error rate with the
wo parameters. If ntree was large enough, the OOB error tended
o be limited by an upper bound. It can be observed that for the
Furong” series cut tobacco data set, 300 trees were sufficient. In
ddition, mtry = √

m was the best choice based on the OOB error
ate [12].

Because of the complexity of the cut tobacco samples, peak over-
ap is unavoidable. Furthermore, all of the tests cannot be finished
t the same time, so resolution deterioration is also inevitable. The
eatures with serious peak overlap had large quantitative devia-
ions. To overcome this disadvantage, we combined the original
ndependent features into a combined feature in a specified chro-

atography elution time zone �t. The selection of the time interval
t is important for the model performance. Fig. 5 shows how vary-

ng �t influenced the predicting results.
When �t = 0, the random forest only considered the original

ndividual peaks, and its classification rate was 91.89%. As expected,
he random forest CRF performed better than the basic RF. It is found
hat �t = 0.25 min was the best choice, with a classification rate of

3.74%. Therefore, CRF outperformed the RF considering only orig-

nal peaks. As the degree of separation may be different in different
ests, it is not unexpected that peaks may merge with neighboring
eaks in a given test while, in other tests, the corresponding peaks
re separated. The CRF can process this case perfectly, reducing the
Fig. 4. Relationship of OOB error rate with ntree and mtry . The value of the abscissa
is the coefficient of

√
m, where m is the number of peaks. If the coefficient is 0, the

number of peaks tried at each split is 1. ntree represents the number of the trees in
the random forest.

effect of misalignment due to resolution change on classification
rate.

4.3. Comparison with other classification methods

Fingerprint data from gas chromatography contains many
variables; a single variable or feature is usually not enough to dis-
tinguish different classes. Therefore, many multivariate analysis
techniques, such as PLS-DA and SVM, have been applied to dis-
criminate between different sample classes. Here we compared our
CRF method with four popular classification methods, PLS-DA, SVM,
Naïve Bayes and bagging, in the analysis of the GC-FID data of cut
tobacco.

Fig. 6a shows the score plot of PLS-DA for the “Furong” series cut
tobacco data. Here, R2Y and Q2 are 0.928 and 0.779, respectively,
and the three classes of cut tobacco are well separated. PLS-DA is a
kind of supervised method; thus, the possibility of overfitting must
be considered. Cross-validation was used for model validation; 20
permutations for the model were used, and the results are shown
in Fig. 6b. Because the Q2-intercept of the PLS-DA model was <0.05
while the R2-intercept was larger than 0.4, overfitting occurred
Fig. 5. Determination of the optimum �t. The prediction classification rate at each
�t is the average of the accuracies obtained by running the algorithm 100 times.
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umbers [14]. To compare its classification rate with SVM, Naïve
ayes and bagging, we selected the same training and test sets as
he CRF did. All of the preprocesses were the same for each algo-
ithm as for the CRF, such as deleting the features for QC samples
ith RSDs more than 25% or MSDs <0.0005. It was found that the

ccuracies of the CRF, RF, SVM, Naïve Bayes and bagging methods
ere 93.74%, 91.89%, 89.22%, 87.00% and 84.59%, respectively.

Although SVM is a very popular classification algorithm that has
hown good performance in a variety of classification tasks, its clas-
ification rate was 4.52% lower than CRF and 2.67% lower than RF
or the cut tobacco data.

The Naïve Bayes’s classification rate for this cut tobacco set
as 87.00%, lower than both RF and CRF. Bagging is also a kind

f ensemble classifier based on tree classifiers, but here it achieved
classification rate of only 84.59%.

Hence the RF, which considers only original peaks, outper-
ormed SVM, Naïve Bayes and bagging in the discrimination of
he tobacco fingerprints. Furthermore, our CRF method, which con-
tructs the tree classifiers with both original peaks and combined
eaks, obtained a classification rate of 93.74%, which is 1.85% higher
han the RF, the variance of the correct classifications of CRF and RF
re 5.36% and 5.73%, respectively. We used t-test to compare the
lassification rates of the CRF and RF, and the p value was 0.008
eaning that the data from two methods are statistically different.
. Conclusions

We constructed a random forest based on combined features
peaks) according to the characteristics of cut tobacco data. Dur-
ng the building of tree classifiers, we considered both the original

[
[
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peaks and their combinations in a specified time interval �t. Then
we investigated its application in the classification of cigarette anal-
ysis data. In a case study involving three different grades of “Furong”
series cigarettes, we first evaluated the effects of the changes of the
random forest parameters ntree and mtry and then discussed the
choice of the specified time interval �t. The experimental results
showed that our CRF algorithm outperformed RF (the random for-
est with the original individual features), especially when �t = 0.25;
the classification rate of CRF was 1.85% higher than that of RF. Fur-
thermore, both RF and CRF performed better than SVM, Naïve Bayes
and bagging. While PLS-DA also showed good predictive capabil-
ity, the model suffered from overfitting. Hence, the random forest
of combined features was more suitable for analyzing fingerprint
data with peak overlap or resolution deterioration.
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